Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
J Cosmet Dermatol ; 23(4): 1113-1121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429932

RESUMO

BACKGROUND: Snail mucin is becoming increasingly popular for its wide range of ingredients and potential benefits. Snail extract's widespread appearance in cosmetic formulations encourages an investigation into the medical and cosmetic benefits. AIMS: This study aims to explore current literature on the variety of snail mucin applications. Specifically, we present a review of the uses, global market estimates and projects, and limitations to snail mucin. METHODS: A literature search was conducted on PubMed reviewing snail mucin and their application in medical and dermatologic fields examining their uses. Economic reports were also investigated for Global Market estimates. RESULTS: The therapeutic use of snail mucin in medical fields has been studied as antimicrobial agents, drug delivery vehicles, antitumor agents, wound healing agents, and biomaterial coatings among others. Additionally, the use in cosmetic fields includes antiaging, hydrating, anti-acne, scarring, and hyperpigmentation treatments. It is important to highlight that most studies conducted were preclinical or small clinical studies, stressing the need for additional large-scale clinical trials to support these claims. Investigations into the global market found estimates ranging from $457 million to $1.2 billion with upward projections in the upcoming decade. Limitations include ethical habitats for collection, allergy investigation, and missing clinical studies. CONCLUSIONS: The findings presented here emphasize the expanding uses of snail mucin and its ingredients alongside a growing market cosmetic industry should consider. We also emphasize the need for appropriate clinical trials into the stated benefits of snail mucin to ensure consumer safety and ethical extraction of mucin.


Assuntos
Cosméticos , Mucinas , Pele , Humanos , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Cicatriz/tratamento farmacológico , Cosméticos/química , Mucinas/uso terapêutico , Pele/efeitos dos fármacos , Caramujos/química
2.
Carbohydr Res ; 529: 108832, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37192581

RESUMO

Heparin-like sulfated polysaccharide, acharan sulfate, was purified from the mucus of an African giant snail with unique sulfated glycosaminoglycans (GAGs). This study reported on finding novel and safe heparin resources from Achatina fulica for further use as well as easy isolation and purification of the active fraction from the initial raw material. Its structure was characterised by a strong-anion exchange combined with high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy. The results indicated that the potential acharan sulfate fraction is a glycosaminoglycan composed of several repeating disaccharide units, namely, of →4)-α-IdoA(2S)(1→4)-α-GlcNAc/GlcNAc(6S)/GlcNSO3(6S)(1→, and hence, presents heterogeneity regarding negative net charge density. Furthermore, the heparinase digests inhibit the binding of SARS-CoV-2 spike protein to the ACE2 receptor. In summary, the acharan sulfate presented in this work has shown its great potential for application in the preparation of sulfated polysaccharides as an alternative to heparin with important biological activity.


Assuntos
COVID-19 , Heparina , Animais , Humanos , Heparina/química , Sulfatos , SARS-CoV-2 , Glicosaminoglicanos/farmacologia , Glicosaminoglicanos/química , Polissacarídeos/química , Caramujos/química , Caramujos/metabolismo , Muco/metabolismo
3.
Mar Drugs ; 21(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36827135

RESUMO

Metallocarboxypeptidases are zinc-dependent peptide-hydrolysing enzymes involved in several important physiological and pathological processes. They have been a target of growing interest in the search for natural or synthetic compound binders with biomedical and drug discovery purposes, i.e., with potential as antimicrobials or antiparasitics. Given that marine resources are an extraordinary source of bioactive molecules, we screened marine invertebrates for new inhibitory compounds with such capabilities. In this work, we report the isolation and molecular and functional characterization of NpCI, a novel strong metallocarboxypeptidase inhibitor from the marine snail Nerita peloronta. NpCI was purified until homogeneity using a combination of affinity chromatography and RP-HPLC. It appeared as a 5921.557 Da protein with 53 residues and six disulphide-linked cysteines, displaying a high sequence similarity with NvCI, a carboxypeptidase inhibitor isolated from Nerita versicolor, a mollusc of the same genus. The purified inhibitor was determined to be a slow- and tight-binding inhibitor of bovine CPA (Ki = 1.1·× 10-8 mol/L) and porcine CPB (Ki = 8.15·× 10-8 mol/L) and was not able to inhibit proteases from other mechanistic classes. Importantly, this inhibitor showed antiplasmodial activity against Plasmodium falciparum in an in vitro culture (IC50 = 5.5 µmol/L), reducing parasitaemia mainly by inhibiting the later stages of the parasite's intraerythrocytic cycle whilst having no cytotoxic effects on human fibroblasts. Interestingly, initial attempts with other related proteinaceous carboxypeptidase inhibitors also displayed similar antiplasmodial effects. Coincidentally, in recent years, a metallocarboxypeptidase named PfNna1, which is expressed in the schizont phase during the late intraerythrocytic stage of the parasite's life cycle, has been described. Given that NpCI showed a specific parasiticidal effect on P. falciparum, eliciting pyknotic/dead parasites, our results suggest that this and related inhibitors could be promising starting agents or lead compounds for antimalarial drug discovery strategies.


Assuntos
Antimaláricos , Carboxipeptidases , Plasmodium falciparum , Animais , Bovinos , Humanos , Antimaláricos/farmacologia , Carboxipeptidases/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Proteínas/farmacologia , Caramujos/química , Suínos
4.
Molecules ; 27(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408688

RESUMO

Acne vulgaris is a common skin disease mainly caused by the Gram-positive pathogenic bacterium, Propionibacterium acnes. This bacterium stimulates the inflammation process in human sebaceous glands. The giant African snail (Achatina fulica) is an alien species that rapidly reproduces and seriously damages agricultural products in Thailand. There were several research reports on the medical and pharmaceutical benefits of these snail mucus peptides and proteins. This study aimed to in silico predict multifunctional bioactive peptides from A. fulica mucus peptidome using bioinformatic tools for the determination of antimicrobial (iAMPpred), anti-biofilm (dPABBs), cytotoxic (ToxinPred) and cell-membrane-penetrating (CPPpred) peptides. Three candidate peptides with the highest predictive score were selected and re-designed/modified to improve the required activities. Structural and physicochemical properties of six anti-P. acnes (APA) peptide candidates were performed using the PEP-FOLD3 program and the four previous tools. All candidates had a random coiled structure and were named APAP-1 ori, APAP-2 ori, APAP-3 ori, APAP-1 mod, APAP-2 mod, and APAP-3 mod. To validate the APA activity, these peptide candidates were synthesized and tested against six isolates of P. acnes. The modified APA peptides showed high APA activity on three isolates. Therefore, our biomimetic mucus peptides could be useful for preventing acne vulgaris and further examined on other activities important to medical and pharmaceutical applications.


Assuntos
Acne Vulgar , Propionibacterium acnes , Animais , Humanos , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Antibacterianos/química , Muco/química , Peptídeos/química , Preparações Farmacêuticas/análise , Propionibacterium acnes/metabolismo , Caramujos/química
5.
Microbiologyopen ; 11(1): e1263, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35212476

RESUMO

The search for new natural compounds for application in medicine and cosmetics is a trend in biotechnology. One of the sources of such active compounds is the snail mucus. Snail physiology and the biological activity of their fluids (especially the mucus) are still poorly studied. Only a few previous studies explored the relationship between snails and their microbiome. The present study was focused on the biodiversity of the snail mucus used in the creation of cosmetic products, therapeutics, and nutraceuticals. The commonly used cultivation techniques were applied for the determination of the number of major bacterial groups. Fluorescence in situ hybridization for key taxa was performed. The obtained images were subjected to digital image analysis. Sequencing of the 16S rRNA gene was also done. The results showed that the mucus harbors a rich bacterial community (10.78 × 1010 CFU/ml). Among the dominant bacteria, some are known for their ability to metabolize complex polysaccharides or are usually found in soil and plants (Rhizobiaceae, Shewanella, Pedobacter, Acinetobacter, Alcaligenes). The obtained data demonstrated that the snail mucus creates a unique environment for the development of the microbial community that differs from other parts of the animal and which resulted from the combined contribution of the microbiomes derived from the soil, plants, and the snails.


Assuntos
Bactérias/isolamento & purificação , Caramujos/microbiologia , Sequência de Aminoácidos , Animais , Bactérias/classificação , Bactérias/genética , Biologia Computacional , Hibridização in Situ Fluorescente , Ponto Isoelétrico , Metagenômica , Microbiota , Muco/química , Muco/microbiologia , RNA Ribossômico 16S/genética , Caramujos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
6.
Asian Pac J Cancer Prev ; 22(11): 3467-3474, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837901

RESUMO

OBJECTIVES: The aim of the present research is to elucidate the anti-oxidant and anti-tumor activities of the mucin extracted from Ereminia desertorum snails´ mucus against two types of tumor cell lines; human colon adenocarcinoma (CACO-2) cells and human hepatoma (HepG-2) cells. METHODS: Both cell lines were treated with Ereminia desertorum snails´ mucin and the oxidative markers were measured in culture media and cells by biochemical and gene expression analysis using RT-PCR. The tumor suppressor gene expression was also evaluated using RT-PCR. RESULTS: The culture media of HepG-2 or CACO-2 cells treated with the extract have high significant increased levels of catalase, SOD, GSH and total antioxidants. Apart from SOD in CACO-2 cells that didn't differ from untreated cells. Also, Gene expression levels (2^-ddct) of the antioxidant markers in HepG-2 cells; GSTA-1, catalase, SOD, and GPx increased in mucin- treated cells. Also, these antioxidant genetic markers were up-regulated in CACO-2 cells by treatment with mucin extract. Gene expression levels (2^-ddct) of tumor suppression genes (p53, Rb, APC, and PTEN) in both HepG-2 and CaCO-2 cells were increased in mucin extract-treated cells. CONCLUSION: The present study highlighted the anti-oxidant and the anti-cancer activities of the mucin extracted from E. desertorum snails´ mucus that could attract attention to such natural product as a possible source of therapeutic compounds against liver and colon cancers.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Mucinas/farmacologia , Oxirredução/efeitos dos fármacos , Caramujos/química , Animais , Células CACO-2 , Linhagem Celular Tumoral , Células Hep G2 , Humanos
7.
J Invertebr Pathol ; 186: 107676, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634285

RESUMO

The snail Pseudosuccinea columella participates in the distribution of Fasciola hepatica in the environment by acting as its intermediate host. Therefore, the control of this lymnaeid is one of the ways to prevent hepatic fascioliasis. The objective of this study was to evaluate the susceptibility of P. columella to infective juveniles (IJs) of the entomopathogenic nematode (EPN) Heterorhabditis baujardi in laboratory conditions, as well as to investigate aspects related to the biochemistry and histopathology of snails exposed or not to the EPNs during three weeks. The EPN exposure induced significant reductions in the concentrations of glucose, total proteins and glycogen (gonad-digestive gland complex) in the snails during the onset of the infection, with the levels being restored as the infection progresses. These alterations were accompanied by increased hemolymph activities of aminotransferases and lactate dehydrogenase, as well as the concentrations of uric acid after the first and second weeks of the experiment. The histopathological analyses of the exposed snails revealed cell necrosis at the end of the first week, tissue inflammatory reactions one and two weeks after exposure, and degeneration three weeks afterward in comparison with the unexposed snails. Finally, scanning electronic microscopy revealed proliferation of fibrous connective tissue three weeks after exposure. The results indicate that P. columella is susceptible to H. baujardi. The exposure favored the establishment of a negative energy balance, increased the activity of enzymes related to tissue damages and promoted accumulation of nitrogen compounds in the host snails. Additionally, was observed in P. columella exposed to the EPNs, significant tissue lesions, and demonstrated the strong pathogenic potential of H. baujardi, indicating its possible application for biological control of this snail.


Assuntos
Interações Hospedeiro-Parasita , Rabditídios/fisiologia , Caramujos/fisiologia , Animais , Caramujos/anatomia & histologia , Caramujos/química , Caramujos/parasitologia
8.
PLoS Negl Trop Dis ; 15(9): e0009725, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34516582

RESUMO

Freshwater snails of the genera Biomphalaria, Bulinus, and Oncomelania are intermediate hosts of schistosomes that cause human schistosomiasis, one of the most significant infectious neglected diseases in the world. Identification of freshwater snails is usually based on morphology and potentially DNA-based methods, but these have many drawbacks that hamper their use. MALDI-TOF MS has revolutionised clinical microbiology and has emerged in the medical entomology field. This study aims to evaluate MALDI-TOF MS profiling for the identification of both frozen and ethanol-stored snail species using protein extracts from different body parts. A total of 530 field specimens belonging to nine species (Biomphalaria pfeifferi, Bulinus forskalii, Bulinus senegalensis, Bulinus truncatus, Bulinus globosus, Bellamya unicolor, Cleopatra bulimoides, Lymnaea natalensis, Melanoides tuberculata) and 89 laboratory-reared specimens, including three species (Bi. pfeifferi, Bu. forskalii, Bu. truncatus) were used for this study. For frozen snails, the feet of 127 field and 74 laboratory-reared specimens were used to validate the optimised MALDI-TOF MS protocol. The spectral analysis yielded intra-species reproducibility and inter-species specificity which resulted in the correct identification of all the specimens in blind queries, with log-score values greater than 1.7. In a second step, we demonstrated that MALDI-TOF MS could also be used to identify ethanol-stored snails using proteins extracted from the foot using a specific database including a large number of ethanol preserved specimens. This study shows for the first time that MALDI-TOF MS is a reliable tool for the rapid identification of frozen and ethanol-stored freshwater snails without any malacological expertise.


Assuntos
Esquistossomose/transmissão , Caramujos/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Vetores de Doenças/classificação , Água Doce/parasitologia , Senegal , Caramujos/química
9.
Toxins (Basel) ; 13(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34564647

RESUMO

Venoms are complex mixtures of proteins that have evolved repeatedly in the animal kingdom. Cone snail venoms represent one of the best studied venom systems. In nature, this venom can be dynamically adjusted depending on its final purpose, whether to deter predators or hunt prey. Here, the transcriptome of the venom gland and the proteomes of the predation-evoked and defensive venoms of the molluscivorous cone snail Cylinder ammiralis were catalogued. A total of 242 venom-related transcripts were annotated. The conotoxin superfamilies presenting more different peptides were O1, O2, T, and M, which also showed high expression levels (except T). The three precursors of the J superfamily were also highly expressed. The predation-evoked and defensive venoms showed a markedly distinct profile. A total of 217 different peptides were identified, with half of them being unique to one venom. A total of 59 peptides ascribed to 23 different protein families were found to be exclusive to the predatory venom, including the cono-insulin, which was, for the first time, identified in an injected venom. A total of 43 peptides from 20 protein families were exclusive to the defensive venom. Finally, comparisons of the relative abundance (in terms of number of peptides) of the different conotoxin precursor superfamilies showed that most of them present similar abundance regardless of the diet.


Assuntos
Venenos de Moluscos/química , Proteoma/metabolismo , Caramujos/química , Transcriptoma , Animais , Conotoxinas/química , Conotoxinas/genética , Perfilação da Expressão Gênica , Venenos de Moluscos/genética , Proteômica , Caramujos/genética
10.
Molecules ; 26(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34443296

RESUMO

In recent decades liposomes have been used in different field thanks to their ability to act as a vehicle for a wide range of biomolecules, their great versatility and their easy production. The aim of this study was to evaluate liposomes as a vehicle for the actives present in the HelixComplex (HC) snail mucus for topical delivery. Liposomes composed of a mixture of phosphatidylcholine, cholesterol and octadecylamine were prepared with and without HC (empty liposomes) and their biological efficacy was tested by evaluating cell viability and migration. HC-loaded liposomes (LHC) were stable throughout 60 days of observation, and showed interesting effects on wound healing reconstitution. In particular, we observed that 25 µg/mL LHC were already able to induce a higher cell monolayer reconstitution in comparison to the untreated samples and HC treated samples after only 4 h (28% versus 10% and 7%, p = 0.03 and p= 0.003, respectively). The effect was more evident at 24 h in comparison with the untreated control (54% versus 21.2% and 41.6%, p = 0.006 and p = NS, respectively). These results represent a preliminary, but promising, novelty in the delivery strategy of the actives present in the HelixComplex mucus.


Assuntos
Muco/química , Caramujos/química , Animais , Morte Celular , Linhagem Celular , Fibroblastos/citologia , Técnica de Fratura por Congelamento , Humanos , Lipídeos/análise , Lipossomos/ultraestrutura , Espectrofotometria Infravermelho , Cicatrização/efeitos dos fármacos
11.
Sci Rep ; 11(1): 13068, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158586

RESUMO

Over the past few years, biogenic methods for designing silver nanocomposites are in limelight due to their ability to generate semi-healthcare and para-pharmaceutical consumer goods. The present study reports the eco-friendly synthesis of silver nanoparticles from the hitherto unexplored mucus of territorial snail Achatina fulica by the facile, clean and easily scalable method. The detailed characterization of the resultant samples by UV-Visible Spectroscopy, FESEM-EDS, XRD and FTIR Spectroscopy techniques corroborated the formation of silver nanoparticles in snail mucus matrix. The resultant samples were tested against a broad range of Gram positive and Gram negative bacteria like Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and a fungal strain Aspergillus fumigatus by well diffusion method. The results indicate that silver nanoparticles in mucus matrix exhibit strong antibacterial as well as antifungal activity. The pertinent experiments were also performed to determine the inhibitory concentration against both bacterial and fungal strains. Anticancer activity was executed by in vitro method using cervical cancer cell lines. Curiously, our biogenically synthesized Ag nanoparticles in biocompatible mucus revealed anticancer activity and demonstrated more than 15% inhibition of Hela cells. We suggest an interesting possibility of formulating antimicrobial and possibly anticancer creams/gels for topical applications in skin ailments.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Química Verde , Nanopartículas Metálicas/química , Muco/química , Prata/farmacologia , Caramujos/química , Animais , DNA/análise , Células HeLa , Humanos , Concentração Inibidora 50 , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Proteínas/análise , RNA/análise , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X
12.
Sci Rep ; 11(1): 3638, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574472

RESUMO

Gastric ulcer or peptic ulcer is a common disease worldwide. Basically, it develops when there is an imbalance between the protective and aggressive factors, especially at the luminal surface of epithelial cells. Thus, there is a constant interest in research new drugs for treatment of gastric ulcer. The snail secretion is a dense mucous, that covers the external surface of the snails, with important functions for the survival of snails. The biological proprieties of snail Helix Aspersa Muller mucus it has been known for centuries to treat human disorders in particular for skin disease. Recently the use of snail mucus has seen a worldwide increase, as a component in cosmetic product and it has been used in particular for the management of wound and skin disorders. In this study we use a murine model of ethanol intragastric administration which has been widely used to test the drugs efficacies and to explore the underlying mechanism for gastric ulcer development. The intragastric ethanol administration causes several mucosal damages and an induction of a severe inflammatory response. Our results show a significant protective effect of snail secretion filtrate in reducing macroscopic and histological lesions, as well the protective effect on mucus content, oxidative stress and inflammatory response. In conclusion this study demonstrate the protective effect of intragastrical snail secretion filtrate, in a model of ethanol-induced gastric ulcer in mice, suggesting its possible useful use in the treatment or prevention of gastric ulcer.


Assuntos
Substâncias Protetoras/uso terapêutico , Caramujos/química , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Animais , Colágeno/análise , Dinoprostona/metabolismo , Etanol , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Glicoproteínas/análise , Inflamação/patologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos , Muco/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Úlcera Gástrica/patologia , Fator de Necrose Tumoral alfa/metabolismo
13.
Food Chem ; 343: 128427, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33131959

RESUMO

Lipids such as phosphatidylcholine (PC), 3-sn-phosphatidylethanolamine (PE), sphingomyelin (SM) and L-α-lysophosphatidylcholine (LPC) are the major components of biological membranes and play important roles in physiological functions. Here, PC, PE, SM, and LPC were extracted from golden apple snails (GAS, Pomacea canaliculata) and GAS flesh (GASF) using an ethanol/hexane sequential scheme and quantified simultaneously using ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) to evaluate whether the GAS could be the source of the four lipids. Our results suggest that ethanol extracts contained the most crude lipids, and the yield of dry (evaporated) lipids were 3.45 g per 100 g fresh GASF and 1.82 g per 100 g of fresh GAS. Quantification of the lipids using UHPLC-ESI-MS/MS suggested that GAS contained PE, PC, SM and LPC, with SM being the most abundant lipid (after purification: 1.71 and 1.42 mg g-1 dry weight from 100 g of GASF and GAS, respectively). The method we used is cost-effective, and the recovery rates of ethanol and hexane ranged from 80-91% and 87-91% respectively. Overall, GAS and GASF are potential raw materials for lipids such as SM and PC extraction using the ethanol/hexane method. Comparatively, lipids extraction from the GAS is more effective and timesaving. Our finding would provide a way to utilize GAS and potentially control its invasion.


Assuntos
Lisofosfatidilcolinas/análise , Fosfatidilcolinas/análise , Fosfatidiletanolaminas/análise , Caramujos/química , Esfingomielinas/análise , Animais , Fracionamento Químico , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Espécies Introduzidas , Lisofosfatidilcolinas/isolamento & purificação , Fosfatidilcolinas/isolamento & purificação , Fosfatidiletanolaminas/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Esfingomielinas/isolamento & purificação , Espectrometria de Massas em Tandem/métodos
14.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374169

RESUMO

Metallothioneins (MTs) are a diverse group of proteins responsible for the control of metal homeostasis and detoxification. To investigate the impact that environmental conditions might have had on the metal-binding abilities of these proteins, we have characterized the MTs from the apple snail Pomacea bridgesii, a gastropod species belonging to the class of Caenogastropoda with an amphibious lifestyle facing diverse situations of metal bioavailability. P. bridgesii has two structurally divergent MTs, named PbrMT1 and PbrMT2, that are longer than other gastropod MTs due to the presence of extra sequence motifs and metal-binding domains. We have characterized the Zn(II), Cd(II), and Cu(I) binding abilities of these two MTs after their heterologous expression in E. coli. Our results have revealed that despite their structural differences, both MTs share an unspecific metal-binding character, and a great ability to cope with elevated amounts of different metal ions. Our analyses have also revealed slight divergences in their metal-binding features: PbrMT1 shows a more pronounced Zn(II)-thionein character than PbrMT2, while the latter has a stronger Cu(I)-thionein character. The characterization of these two unconventional PbrMTs supports the loss of the metal-binding specificity during the evolution of the MTs of the Ampullariid family, and further suggests an evolutionary link of this loss with the adaptation of these gastropod lineages to metal-poor freshwater habitats.


Assuntos
Cádmio/química , Cobre/química , Metalotioneína , Caramujos , Zinco/química , Animais , Metalotioneína/química , Metalotioneína/genética , Caramujos/química , Caramujos/genética
15.
Mar Drugs ; 18(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371188

RESUMO

The natural products of heterobranch molluscs display a huge variability both in structure and in their bioactivity. Despite the considerable lack of information, it can be observed from the recent literature that this group of animals possesses an astonishing arsenal of molecules from different origins that provide the molluscs with potent chemicals that are ecologically and pharmacologically relevant. In this review, we analyze the bioactivity of more than 450 compounds from ca. 400 species of heterobranch molluscs that are useful for the snails to protect themselves in different ways and/or that may be useful to us because of their pharmacological activities. Their ecological activities include predator avoidance, toxicity, antimicrobials, antifouling, trail-following and alarm pheromones, sunscreens and UV protection, tissue regeneration, and others. The most studied ecological activity is predation avoidance, followed by toxicity. Their pharmacological activities consist of cytotoxicity and antitumoral activity; antibiotic, antiparasitic, antiviral, and anti-inflammatory activity; and activity against neurodegenerative diseases and others. The most studied pharmacological activities are cytotoxicity and anticancer activities, followed by antibiotic activity. Overall, it can be observed that heterobranch molluscs are extremely interesting in regard to the study of marine natural products in terms of both chemical ecology and biotechnology studies, providing many leads for further detailed research in these fields in the near future.


Assuntos
Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo , Caramujos/metabolismo , Animais , Produtos Biológicos/química , Caramujos/química
16.
Toxicol Ind Health ; 36(11): 863-875, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32909903

RESUMO

Some snails (Achatina spp) can be used as a biosensor of heavy metal poisoning. This study thus estimated some heavy metal levels, antioxidant markers, and lipid profiles of snails handpicked around cement factory vicinities in Ogun State, Nigeria. Snails and soil samples were collected from Oke, Ewekoro, Papalanto, and Mowodani Imeko-Afon (control site). Lead (Pb), cadmium (Cd), and arsenic (As) levels were estimated in the soil, snail foot, hemolymph, and shell using Atomic Absorption Spectrophotometry. Triacylglycerol (TAG), phospholipids (PHOL), cholesterol (CHOL), malondialdehyde (MDA), and reduced glutathione (GSH) levels, as well as glutathione-S-transferase (GST), lactate dehydrogenase (LDH), and arylesterase (AR) activities in the hemolymph, were estimated spectrophotometrically. The snails collected from the Oke site had the highest foot Pb (274.66 ± 13.50 mg/g tissue), CHOL, TAG, PHOL levels, and GST activity when compared with other sites. Snails collected from Papa had the highest Cd levels (1.79 ± 0.74 mg/kg), As (1206 ± 18.87 mg/g tissue) in the foot, and LDH activity, while Ewekoro snails had highest MDA levels and AR activities but the lowest GSH levels. Additionally, there were negative correlations between the heavy metal levels and the activities of GST and AR as well as GSH levels, while positively correlating with LDH activity and MDA level. Workers and the general public around cement factories are at a greater risk of heavy metal-induced pathologies. More so, consumption of snails around these sites may be deleterious to health.


Assuntos
Antioxidantes/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metais Pesados/análise , Caramujos/química , Poluentes do Solo/análise , Animais , Bioacumulação , Poluição Ambiental/análise , Indústrias , Nigéria
17.
Artigo em Inglês | MEDLINE | ID: mdl-32897807

RESUMO

A QuEChERS multi-residue GC-MS/MS method was developed for determining 160 pesticides in fresh edible snails. The method was validated according to the EU guidance SANTE/12682/2019. Twenty-seven different pesticides were quantified in the 824 samples analysed. Of these, 22.09% contained pesticide residues; in one case six different pesticides. The most frequently quantified pesticides were chlorpyrifos (108 samples), cypermethrin (50), difenoconazole (24), oxyfluorfen (13), lambda-cyhalothrin (12), tetraconazole and azoxystrobin (7). Other pesticides were found in <5 samples. Of the samples containing residues, 154 exceeded the EU legal limit. However, the estimated daily intake of pesticide residues showed that snail consumption does not represent appreciable risks to consumer health.


Assuntos
Contaminação de Alimentos/análise , Resíduos de Praguicidas/análise , Caramujos/química , Animais , Clorobenzenos/análise , Clorpirifos/análise , Cromatografia Gasosa-Espectrometria de Massas , Éteres Difenil Halogenados/análise , Humanos , Nitrilas/análise , Nível de Efeito Adverso não Observado , Piretrinas/análise , Pirimidinas/análise , Extração em Fase Sólida , Estrobilurinas/análise , Triazóis/análise
18.
Carbohydr Polym ; 247: 116682, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829810

RESUMO

Diabetic foot ulcer (DFU) is a common high-risk complication in patients with diabetes mellitus, but current drugs and therapies in management of this disease cannot meet the urgent clinical needs. In this study, a snail glycosaminoglycan (SGAG) from the cultured China white jade snail was purified and structurally clarified. This snail glycosaminoglycan is a regular sulfated polysaccharide, composed of iduronic acid (IdoA) and N-acetyl-glucosamine (GlcNAc) with the repeating sequence of →4)-α-GlcNAc (1→4)-α-IdoA2S (1→. The biological assays showed that SGAG had no anticoagulant activity for lacking specific heparin pentasaccharide sequence. The pharmacological experiments suggested that SGAG markedly accelerated the healing of full-thickness wounds in diabetic mice skin. Histologic and immunohistochemical analysis revealed that SGAG treatment alleviated the inflammation and dermal edema, and promoted angiogenesis. This is the first report applying the snail glycosaminoglycan to favor diabetic wound healing.


Assuntos
Indutores da Angiogênese/química , Indutores da Angiogênese/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Glicosaminoglicanos/química , Glicosaminoglicanos/farmacologia , Caramujos/química , Acetilglucosamina/química , Actinas/metabolismo , Indutores da Angiogênese/isolamento & purificação , Animais , Anti-Inflamatórios/isolamento & purificação , Diabetes Mellitus Experimental , Edema/tratamento farmacológico , Epitélio/efeitos dos fármacos , Epitélio/fisiologia , Glicosaminoglicanos/isolamento & purificação , Heparina/química , Ácido Idurônico/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-8/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Regeneração , Pele/efeitos dos fármacos , Pele/patologia , Dermatopatias/tratamento farmacológico , Cicatrização/efeitos dos fármacos
19.
Molecules ; 25(13)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640504

RESUMO

Plants and plant-based products have been used for a long time for medicinal purposes. This study aimed to determine the antioxidant and anti-α-glucosidase activities of eight selected underutilized plants in Malaysia: Leucaena leucocephala, Muntingia calabura, Spondias dulcis, Annona squamosa, Ardisia elliptica, Cynometra cauliflora, Ficus auriculata, and Averrhoa bilimbi. This study showed that the 70% ethanolic extract of all plants exhibited total phenolic content (TPC) ranging from 51 to 344 mg gallic acid equivalent (GAE)/g dry weight. A. elliptica showed strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging activities, with half maximal inhibitory concentration (IC50) values of 2.17 and 49.43 µg/mL, respectively. Most of the tested plant extracts showed higher inhibition of α-glucosidase enzyme activity than the standard, quercetin, particularly A. elliptica, F. auriculata, and M. calabura extracts with IC50 values of 0.29, 0.36, and 0.51 µg/mL, respectively. A total of 62 metabolites including flavonoids, triterpenoids, benzoquinones, and fatty acids were tentatively identified in the most active plant, i.e., A. elliptica leaf extract, by using ultra-high-performance liquid chromatography (UHPLC)-electrospray ionization (ESI) Orbitrap MS. This study suggests a potential natural source of antioxidant and α-glucosidase inhibitors from A. elliptica.


Assuntos
Ardisia/química , Inibidores de Glicosídeo Hidrolases/análise , Fenóis/análise , Extratos Vegetais/química , Plantas Medicinais/química , Antioxidantes/química , Ardisia/enzimologia , Benzoquinonas/química , Compostos de Bifenilo/metabolismo , Cromatografia Líquida de Alta Pressão , Fabaceae/química , Fabaceae/enzimologia , Ácidos Graxos/análise , Flavonoides/análise , Inibidores de Glicosídeo Hidrolases/química , Concentração Inibidora 50 , Malásia , Espectrometria de Massas , Óxido Nítrico/metabolismo , Picratos/metabolismo , Extratos Vegetais/análise , Caramujos/química , Triterpenos/análise
20.
Int Immunopharmacol ; 84: 106566, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32416451

RESUMO

Various natural compounds have been tested as anticancer therapeutics in clinical trials. Most promising direction for antitumor therapy is the use of substances which enhance the immune system response stimulating tumor-specific lymphocytes. Hemocyanins are large extracellular oxygen transport glycoproteins isolated from different arthropod and mollusk species which exhibit strong anticancer properties. Immunized in mammals they trigger Th1 immune response that promotes unspecific stimulation and adjuvant activity in experimental therapeutic vaccines for cancer and antibody development. In the present study we used two hemocyanins - one isolated from marine snail Rapana thomasiana (RtH) and another one, from the terrestrial snail Helix pomatia (HpH) which have been investigated by using different administration schedules (intensive and mild) in murine model of colon carcinoma. The treatment with RtH and HpH generated high levels of antitumor IgG antibodies, antibody-producing plasma cells and tumor-specific CTLs, stimulated secretion of proinflammatory cytokines, suppressed the manifestation of carcinoma symptoms as tumor growth and size, and prolonged the life span of treated mice. Our results showed a significant anti-cancer effect of RtH and HpH hemocyanins on a murine model of colon carcinoma with promising potential for immunotherapy in various schemes of administration based on cross-reactive tumor-associated epitopes.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Hemocianinas/uso terapêutico , Caramujos/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/sangue , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Hemocianinas/farmacologia , Imunoglobulina G/sangue , Imunoterapia , Camundongos Endogâmicos BALB C , Plasmócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...